ATP-sensitive inwardly rectifying potassium channel modulators alter cardiac function in honey bees.

نویسندگان

  • Scott T O'Neal
  • Daniel R Swale
  • Jeffrey R Bloomquist
  • Troy D Anderson
چکیده

ATP-sensitive inwardly rectifying potassium (KATP) channels couple cellular metabolism to the membrane potential of the cell and play an important role in a variety of tissue types, including the insect dorsal vessel, making them a subject of interest not only for understanding invertebrate physiology, but also as a potential target for novel insecticides. Most of what is known about these ion channels is the result of work performed in mammalian systems, with insect studies being limited to only a few species and physiological systems. The goal of this study was to investigate the role that KATP channels play in regulating cardiac function in a model social insect, the honey bee (Apis mellifera), by examining the effects that modulators of these ion channels have on heart rate. Heart rate decreased in a concentration-dependent manner, relative to controls, with the application of the KATP channel antagonist tolbutamide and KATP channel blockers barium and magnesium, whereas heart rate increased with the application of a low concentration of the KATP channel agonist pinacidil, but decreased at higher concentrations. Furthermore, pretreatment with barium magnified the effects of tolbutamide treatment and eliminated the effects of pinacidil treatment at select concentrations. The data presented here confirm a role for KATP channels in the regulation of honey bee dorsal vessel contractions and provide insight into the underlying physiology that governs the regulation of bee cardiac function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phosphoinositides Decrease Atp Sensitivity of the Cardiac Atp-Sensitive K+ Channel

Anionic phospholipids modulate the activity of inwardly rectifying potassium channels (Fan, Z., and J.C. Makielski. 1997. J. Biol. Chem. 272:5388-5395). The effect of phosphoinositides on adenosine triphosphate (ATP) inhibition of ATP-sensitive potassium channel (K(ATP)) currents was investigated using the inside-out patch clamp technique in cardiac myocytes and in COS-1 cells in which the card...

متن کامل

Mitochondrial ATP-sensitive potassium channel activity and hypoxic preconditioning are independent of an inwardly rectifying potassium channel subunit in Caenorhabditis elegans.

Hypoxic preconditioning (HP) is an evolutionarily-conserved mechanism that protects an organism against stress. The mitochondrial ATP-sensitive K(+) channel (mK(ATP)) plays an essential role in the protective signaling, but remains molecularly undefined. Several lines of evidence suggest that mK(ATP) may arise from an inward rectifying K(+) channel (Kir). The genetic model organism Caenorhabdit...

متن کامل

A strongly inwardly rectifying K+ channel that is sensitive to ATP.

We have cloned an inwardly rectifying K+ channel from the hamster insulinoma cDNA library and shown that it is inhibited by cytoplasmic ATP. The channel is 90.97% identical to the IRK3 channels cloned from other species, and its mRNA is found primarily in the brain. When expressed in Xenopus oocytes, the channel displays strong inward rectification typical of inward rectifiers. The channel is i...

متن کامل

Phosphoinositides Decrease ATP Sensitivity of the Cardiac ATP-sensitive K 1 Channel A Molecular Probe for the Mechanism of ATP-sensitive Inhibition

Anionic phospholipids modulate the activity of inwardly rectifying potassium channels (Fan, Z., and J.C. Makielski. 1997. J . Biol . Chem . 272:5388–5395). The effect of phosphoinositides on adenosine triphosphate (ATP) inhibition of ATP-sensitive potassium channel (K ATP ) currents was investigated using the inside-out patch clamp technique in cardiac myocytes and in COS-1 cells in which the c...

متن کامل

Inhibitory effects of protein kinase C on inwardly rectifying K+- and ATP-sensitive K+ channel-mediated responses of the basilar artery.

BACKGROUND AND PURPOSE The structurally related, inwardly rectifying K+ (K(IR)) channel and the ATP-sensitive K+ (K(ATP)) channel are important modulators of cerebral artery tone. Although protein kinase C (PKC) activators have been shown to inhibit these channels with the use of patch-clamp electrophysiology, effects of PKC on K+ channel function in intact cerebral blood vessels are unknown. W...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of insect physiology

دوره 99  شماره 

صفحات  -

تاریخ انتشار 2017